Six Easy Pieces: Essentials of Physics Explained by Its Most Brilliant Teacher
Richard Feynman Robert Leighton and Sands Matthew Ss

Ended: March 22, 2018

Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet.
The principle of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth.”
the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all things are made of atoms—little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. In that one sentence, you will see, there is an enormous amount of information about the world, if just a little imagination and thinking are applied.
Strictly speaking, the crystal is not made of atoms, but of what we call ions. An ion is an atom which either has a few extra electrons or has lost a few electrons. In a salt crystal we find chlorine ions (chlorine atoms with an extra electron) and sodium ions (sodium atoms with one electron missing). The ions all stick together by electrical attraction in the solid salt, but when we put them in the water we find, because of the attractions of the negative oxygen and positive hydrogen for the ions, that some of the ions jiggle loose.
A process in which the rearrangement of the atomic partners occurs is what we call a chemical reaction. The other processes so far described are called physical processes, but there is no sharp distinction between the two. (Nature does not care what we call it, she just keeps on doing it.)
What is this law of gravitation? It is that every object in the universe attracts every other object with a force which for any two bodies is proportional to the mass of each and varies inversely as the square of the distance between them.
The brilliant idea resulting from these considerations is that no tangential force is needed to keep a planet in its orbit (the angels do not have to fly tangentially) because the planet would coast in that direction anyway. If there were nothing at all to disturb it, the planet would go off in a straight line. But the actual motion deviates from the line on which the body would have gone if there were no force, the deviation being essentially at right angles to the motion, not in the direction of the motion. In other words, because of the principle of inertia, the force needed to control the motion of a planet around the sun is not a force around the sun but toward the sun.
What is gravity? But is this such a simple law? What about the machinery of it? All we have done is to describe how the earth moves around the sun, but we have not said what makes it go. Newton made no hypotheses about this; he was satisfied to find what it did without getting into the machinery of it. No one has since given any machinery. It is characteristic of the physical laws that they have this abstract character. The law of conservation of energy is a theorem concerning quantities that have to be calculated and added together, with no mention of the machinery, and likewise the great laws of mechanics are quantitative mathematical laws for which no machinery is available.
The gravitational attraction relative to the electrical repulsion between two electrons is 1 divided by 4.17 × 1042! The question is, where does such a large number come from? It is not accidental, like the ratio of the volume of the earth to the volume of a flea. We have considered two natural aspects of the same thing, an electron. This fantastic number is a natural constant, so it involves something deep in nature. Where could such a tremendous number come from? Some say that we shall one day find the “universal equation,” and in it, one of the roots will be this number. It is very difficult to find an equation for which such a fantastic number is a natural root.
Newton’s law of gravitation is not correct! It was modified by Einstein to take into account the theory of relativity. According to Newton, the gravitational effect is instantaneous, that is, if we were to move a mass, we would at once feel a new force because of the new position of that mass; by such means we could send signals at infinite speed. Einstein advanced arguments which suggest that we cannot send signals faster than the speed of light, so the law of gravitation must be wrong. By correcting it to take the delays into account, we have a new law, called Einstein’s law of gravitation. One feature of this new law which is quite easy to understand is this: In the Einstein relativity theory, anything which has energy has mass—mass in the sense that it is attracted gravitationally. Even light, which has an energy, has a “mass.” When a light beam, which has energy in it, comes past the sun there is an attraction on it by the sun. Thus the light does not go straight, but is deflected. During the eclipse of the sun, for example, the stars which are around the sun should appear displaced from where they would be if the sun were not there, and this has been observed.
“Quantum mechanics” is the description of the behavior of matter in all its details and, in particular, of the happenings on an atomic scale. Things on a very small scale behave like nothing that you have any direct experience about. They do not behave like waves, they do not behave like particles, they do not behave like clouds, or billiard balls, or weights on springs, or like anything that you have ever seen.