The Talent Code: Greatness Isn't Born. It's Grown. Here's How.
Daniel Coyle

Ended: July 9, 2011

let's say you're at a party and you're struggling to remember someone's name. If someone else gives you that name, the odds of your forgetting it again are high. But if you manage to retrieve the name on your own—to fire the signal yourself, as opposed to passively receiving the information—you'll engrave it into your memory. Not because that name is somehow more important, or because your memory improved, but simply because you practiced deeper.
Deep practice is built on a paradox: struggling in certain targeted ways—operating at the edges of your ability, where you make mistakes—makes you smarter. Or to put it a slightly different way, experiences where you're forced to slow down, make errors, and correct them—as you would if you were walking up an ice-covered hill, slipping and stumbling as you go—end up making you swift and graceful without your realizing it.
Group B studied only once but was tested three times. A week later both groups were tested, and Group B scored 50 percent higher than Group A. They'd studied one-fourth as much yet learned far more. (Catherine Fritz, one of Bjork's students, said she applied these ideas to her schoolwork, and raised her GPA by a full point while studying half as much.)
Futsal compresses soccer's essential skills into a small box; it places players inside the deep practice zone, making and correcting errors, constantly generating solutions to vivid problems. Players touching the ball 600 percent more often learn far faster, without realizing it, than they would in the vast, bouncy expanse of the outdoor game (where, at least in my mind, players run along to the soundtrack of Clarissa tootling away on “The Blue Danube”). To be clear: futsal is not the only reason Brazilian soccer is great. The other factors so often cited—climate, passion, and poverty—really do matter. But futsal is the lever through which those other factors transfer their force.
“What do good athletes do when they train?” Bartzokis said. “They send precise impulses along wires that give the signal to myelinate that wire. They end up, after all the training, with a super-duper wire—lots of bandwidth, a high-speed T-3 line. That's what makes them different from the rest of us.”
All actions are really the result of electrical impulses sent along chains of nerve fibers.
The more we develop a skill circuit, the less we're aware that we're using it. We're built to make skills automatic, to stash them in our unconscious mind. This process, which is called automaticity, exists for powerful evolutionary reasons. (The more processing we can do in our unconscious minds, the better our chances of noticing that saber-toothed tiger lurking in the brush.) It also creates a powerfully convincing illusion: a skill, once gained, feels utterly natural, as if it's something we've always possessed.
Myelin doesn't make synapses unimportant—to the contrary, Fields and other neurologists emphasize that synaptical changes remain key to learning. But myelin plays a massive role in how that learning manifests itself. As Fields put it, “Signals have to travel at the right speed, arrive at the right time, and myelination is the brain's way of controlling that speed.”
Fields informed me, are oligodendrocytes—oligos, in lab lingo, the cells that produce the myelin. When a nerve fiber fires, the oligo senses it, grabs hold, and starts wrapping. Each tentacle curls and extends as the oligo squeezes cytoplasm out of itself until only a cellophanelike sheet of myelin remains. That myelin, still attached to the oligo, proceeds to wrap over and over the nerve fiber with unworldly precision, spiraling down on each end to create the distinctive sausage shape, tightening itself like a threaded nut along the fiber.
The firing of the circuit is paramount. Myelin is not built to respond to fond wishes or vague ideas or information that washes over us like a warm bath. The mechanism is built to respond to actions: the literal electrical impulses traveling down nerve fibers. It responds to urgent repetition. In a few chapters we'll discuss the likely evolutionary reasons, but for now we'll simply note that deep practice
is assisted by the attainment of a primal state, one where we are attentive, hungry, and focused, even desperate.
Myelin is universal. One size fits all skills. Our myelin doesn't “know” whether it's being used for playing shortstop or playing Schubert: regardless of its use, it grows according to the same rules. Myelin is meritocratic: circuits that fire get insulated. If you moved to China, your myelin would wrap fibers that help you conjugate Mandarin verbs. To put it another way, myelin doesn't care who you are—it cares what you do.
Myelin wraps—it doesn't unwrap. Like a highway-paving machine, myelination happens in one direction. Once a skill circuit is insulated, you can't un-insulate it (except through age or disease). That's why habits are hard to break. The only way to change them is to build new habits by repeating new behaviors—by myelinating new circuits.
Age matters. In children, myelin arrives in a series of waves, some of them determined by genes, some dependent on activity. The waves last into our thirties, creating critical periods during which time the brain is extraordinarily receptive to learning new skills. Thereafter we continue to experience a net gain of myelin until around the age of fifty, when the balance tips toward loss. We retain the ability to myelinate throughout life—thankfully, 5 percent of our oligos remain immature, always ready to answer the call. But anyone who has tried to learn a language or a musical instrument later in life can testify that it takes a lot more time and sweat to build the requisite circuitry. This is why the vast majority of world-class experts start young.
A famed 1956 paper by psychologist George Miller, called “The Magical Number Seven, Plus or Minus Two,” established the rule that human short-term memory was limited to seven pieces of independent information (and gave Bell Telephone reason to settle on seven-digit phone numbers). The limit was called “channel capacity,” and the capacity was believed to be as fixed as height or shoe size.
Ericsson showed that the existing model of short-term memory was wrong. Memory wasn't like shoe size—it could be improved through training. And this was when Ericsson had an insight: a glimpse of an unexplored territory worthy of his hero Hedin. If short-term memory wasn't limited, then what was? Every skill was a form of memory. When a champion skier flew down a hill, she was using structures of memory, telling her muscles what to do and when. When a master cellist played, he too was using structures of memory. Why wouldn't they all be subject to the same sort of training effect?
Its central tenet is a Gibraltar-like statistic: every expert in every field is the result of around ten thousand hours of committed practice. Ericsson called this process “deliberate practice” and defined it as working on technique, seeking constant critical feedback, and focusing ruthlessly on shoring up weaknesses. (For practical purposes, we can consider “deliberate practice” and “deep practice” to be basically the same thing—though since he's a psychologist, Ericsson's term refers to the mental state, not to myelin. For the record, he is attracted to the idea. “I find the correlation [between myelin and skill] very interesting,” he told me.)
What about geniuses? What about young Mozart's famous ability to transcribe entire scores on a single hearing? What about savants who saunter up to a piano or a Rubik's Cube and are instantly, magically brilliant? Ericsson and his colleagues reply with cool, irrefutable stacks of numbers. In Genius Explained, Dr. Michael Howe of Exeter University estimates that Mozart, by his sixth birthday, had studied 3,500 hours of music with his instructor-father, a fact that places his musical memory in the realm of impressive but obtainable skill. Savants tend to excel within narrow domains that feature clear, logical rules (piano and math—as opposed to, say, improvisational comedy or fiction writing). Further more, savants typically accumulate massive amounts of prior exposure to those domains, through such means as listening to music in the home. The true expertise of these geniuses, the research suggests, resides in their ability to deep-practice obsessively, even when it doesn't necessarily look like they're practicing. As Ericsson succinctly put it, “There's no cell type that geniuses have that the rest of us don't.” That's not to say that a minuscule percentage of people don't possess an innate, obsessive desire to improve—what psychologist Ellen Winner calls “the rage to master.” But these sorts of self-driven deep practicers are rare and are blazingly self-evident. (A rule of thumb: if you have to ask whether your child possesses the rage to master, he doesn't.)
Also in the skills of a certain Tour de France cyclist. For a previous book, I had spent a year following Lance Armstrong as he prepared for what is widely considered to be the world's toughest race. While the physical demands were unique, there's no question that Armstrong's mental approach—the maniacal focus on errors, the desire to optimize every dimension of the race, the restless eagerness to operate at the edges of his (and everyone else's) abilities—added up to a one-man clinic on the power of deep practice.
Why do breast-fed babies have higher IQs? Because the fatty acids in breast milk are the building blocks of myelin. This is why the FDA recently approved the addition of omega-3 fatty acids to infant formula, and also why eating fish, which is rich in fatty acids, has been linked to lowered risk of memory loss, dementia, and Alzheimer's disease. (Bartzokis takes DHA fatty acids daily.) The
Now let's consider a different design strategy. Instead of prewiring for specific skills, what if the genes dealt with the skill issue by building millions of tiny broadband installers and distributing them throughout the circuits of the brain? The broadband installers wouldn't be particularly complicated—in fact, they'd all be identical, wrapping wires with insulation to make the circuits work faster and smoother. They would work according to a single rule: whatever circuits are fired most, and
most urgently, are the ones where the installers will go. Skill circuits that are fired often will receive more broadband; skills that are fired less often, with less urgency, will receive less broadband.
Chunking is a strange concept. The idea that skill—which is graceful, fluid, and seemingly effortless—should be created by the nested accumulation of small, discrete circuits seems counterintuitive, to say the least.
First, the participants look at the task as a whole—as one big chunk, the megacircuit. Second, they divide it into its smallest possible chunks. Third, they play with time, slowing the action down, then speeding it up, to learn its inner architecture.
The skill Zimmerman and Kitsantas chose was a volleyball serve. They gathered a range of expert players, club players, and novices, and asked them how they approached the serve: their goals, planning, strategy choices, self-monitoring, and adaptation—twelve measures in all. Using the answers, they predicted the players' relative skill levels, then had the players execute their serve to test the accuracy of their predictions. The result? Ninety percent of the variation in skill could be accounted for
“When I click in, every note is being played for a purpose. It feels like I'm building a house. It feels like, this brick goes here, that one goes there, I connect them and get a foundation. Then I add the walls,
What's the simplest way to diminish the skills of a superstar talent (short of inflicting an injury)? What would be the surest method of ensuring that LeBron James started clanking jump shots, or that Yo-Yo Ma started fudging chords? The answer: don't let them practice for a month. Causing skill to evaporate doesn't require chromosomal rejiggering or black-ops psychological maneuvers. It only requires that you stop a skilled person from systematically firing his or her circuit for a mere thirty days. Their muscles won't have changed; their much-vaunted genes and character will remain unaltered; but you will have touched
Spending more time is effective—but only if you're still in the sweet spot at the edge of your capabilities, attentively building and honing circuits. What's more, there seems to be a universal limit for how much deep practice human beings can do in a day. Ericsson's research shows that most world-class experts—including pianists, chess players, novelists, and athletes—practice between three and five hours a day, no matter what skill they pursue.
paint a vivid picture of what deep practice feels like. It's the feeling, in short, of being a staggering baby, of intently, clumsily lurching toward a goal and toppling over. It's a wobbly, discomfiting sensation that any sensible person would instinctively seek to avoid. Yet the longer the babies remained in that state—the more willing they were to endure it, and to permit themselves to fail—the more myelin they built, and the more skill they earned. The staggering babies embody the deepest truth about deep practice: to get good, it's helpful to be willing, or even enthusiastic, about being bad. Baby steps are the royal road to skill.
Deep practice tends to leave people exhausted: they can't maintain it for more than an hour or two at a sitting (a finding Ericsson has observed across many disciplines).
“If we're in a nice, easy, pleasant environment, we naturally shut off effort,” Bargh said. “Why work? But if people get the signal that it's rough, they get motivated now. A nice, well-kept tennis academy gives them the luxury future right now—of course they'd be demotivated. They can't help it.”
The research of Bargh and his colleagues adds up to a theorem that might be dubbed the Scrooge Principle, which goes as follows: our unconscious mind is a stingy banker of energy reserves, keeping its wealth locked in a vault. Direct pleas to open the vault often don't work; Scrooge can't be fooled that easily. But when he's hit with the right combination of primal cues—when he's visited by a series of primal-cue ghosts, you might say—the tumblers click, the vault of energy flies open, and suddenly it's Christmas Day.
On average, the eminent group lost their first parent at an average age of 13.9, compared with 19.6 for a control group. All in all, it's a list deep and broad enough to justify the question posed by a 1978 French study: do orphans rule the world?*3
The genetic explanation for world-class achievement is useless in this case, because the people on this list are linked by shared life events that have nothing to do with chromosomes. But when we look at parental loss as a signal hitting a motivational trigger, the connection becomes clearer. Losing a parent is a primal cue: you are not safe. You don't have to be a psychologist to appreciate the massive outpouring of energy that can be created by a lack of safety; nor do you have to be a Darwinian theorist to appreciate how such a response might have evolved.
it was the primal cue—you are not safe—that, by tripping the ancient self-preserving evolutionary switch, provided energy for their efforts, so that they built their various talents over the course of years, step by step, wrap by wrap. Seen this way, the superstars on Eisenstadt's list are not uniquely gifted exceptions, but rather the logical extensions of the same universal principles that govern all of us: (1) talent requires deep practice; (2) deep practice requires vast amounts of energy; (3) primal cues trigger huge outpourings of energy. And as George Bartzokis might point out, the eminent people, on average, received this signal as young teens, during the brain's key development period, in which information-processing pathways are particularly receptive to myelin.*4
experiment then came full circle, returning to a test of the same difficulty as the initial test. The praised-for-effort group improved their initial score by 30 percent, while the praised-for-intelligence group's score declined by 20 percent. All because of six short words. Dweck was so surprised at the result that she reran the study five times. Each time the result was the same.
When we use the term motivational language, we are generally referring to language that speaks of hopes, dreams, and affirmations (“You are the best!”). This kind of language—let's call it high motivation—has its role. But the message from Dweck and the hotbeds is clear: high motivation is not the kind of language that ignites people. What works is precisely the opposite: not reaching up but reaching down, speaking to the ground-level effort, affirming the struggle. Dweck's research shows that phrases like “Wow, you really tried hard,” or “Good job, dude,” motivate far better than what she calls empty praise. From the myelin point
Angela Duckworth studied several parameters of 164 eighth graders, including IQ, along with five tests that measured self-discipline. It turned out that self-discipline was twice as accurate as IQ in predicting the students' grade-point average.
“Great teachers focus on what the student is saying or doing,” he says, “and are able, by being so focused and by their deep knowledge of the subject matter, to see and recognize the inarticulate stumbling, fumbling effort of the student who's reaching toward mastery, and then connect to them with a targeted message.”
Many of the coaches I met shared a similar biographical arc: they had once been promising talents in their respective fields but failed and tried to figure out why. A good example is Louisiana-born Linda Septien, who eventually founded the Septien Vocal Studio in Dallas, Texas.
Skills like soccer, writing, and comedy are flexible-circuit skills, meaning that they require us to grow vast ivy-vine circuits that we can flick through to navigate an ever-changing set of obstacles. Playing violin, golf, gymnastics, and figure skating, on the other hand, are consistent-circuit skills, depending utterly on a solid foundation of technique that enables us to reliably re-create the fundamentals of an ideal performance. (This is why self-taught violinists, skaters, and gymnasts rarely reach world-class level and why self-taught novelists, comedians, and soccer players do all the time.) The universal rule remains the same: good coaching supports the desired circuit. The passive Brazilian coach and the highly involved Suzuki teacher only seem to use different methods; when we look closer, we see that their goal is the same as that of John Wooden or Mary Epperson or any other master coach: to get inside the deep-practice zone, to maximize the firings that grow the right myelin for the task, and ultimately to move closer toward the day that every coach desires, when the students become their own teachers.
In Finland, a teacher is regarded as the social equal of a doctor or lawyer, and is compensated accordingly. All elementary teachers have master's degrees in pedagogy; schools are run like teaching hospitals, where young teachers are analyzed and evaluated. It's competitive: some schools receive forty applications for a single job opening. Thanks to a receptive culture and an intelligent mix of planning and investment, Finland seems to have found a way to institutionalize the deep practice of teaching.
But studies show that baby-brain DVDs don't make children smarter. In fact, they make them less smart. A 2007 University of Washington study found that, for children aged eight to sixteen months, each hour spent per day viewing “brain science” baby DVDs decreased vocabulary acquisition by 17 percent. And when you think about it in terms of the myelin model, this makes perfect sense. Baby-brain DVDs don't work because they don't create deep practice—in fact, they actively prevent it, by taking up time that could be used for firing circuits. The images and sounds on the DVDs wash over the babies like a warm bath—entertaining and immersive but useless compared with the rich interactions, errors, and learning that happens when babies are staggering around in the real world. Or, to put it another way: Skill is insulation that wraps neural circuits and grows according to certain signals.
The vast majority of improvements come from employees, and the vast majority of those changes are small: a one-foot shift in the location of a parts bin, for instance. But they add up. It's estimated that each year Toyota implements around a thousand tiny fixes in each of its assembly lines, about a million tiny fixes overall. Toyota, moving in these fitful baby steps, is like a giant, car-making Clarissa. The small changes are like tiny wraps of myelin, helping its circuitry run a fraction faster, smoother, and more accurately. The sign over the door of Toyota's Georgetown, Kentucky, factory puts it in perfect deep-practice language: “When something goes wrong, ask WHY five times.”
one first has to overcome the natural tendency to smooth over problems—something particularly difficult in business. James Wiseman, who's now Toyota's vice president for corporate affairs, told Fast Company magazine about his first days at the company. At his previous jobs, he said, “there was always a lot of looking for the silver bullet, looking for the big, dramatic improvement.” When he arrived at Toyota, he realized things were different. “One Friday I gave a report of an activity we'd been doing [a plant expansion], and I spoke very positively about it, I bragged a little. After two or three minutes, I sat down. And Mr. Cho [Fujio Cho, now the chairman of Toyota worldwide] kind of looked at me. I could see he was puzzled. He said, ‘Jim-san. We all know you are a good manager, otherwise we would not have hired you. But please talk to us about your problems so we can all work on them together.’”
“We believe that people are shy not because they lack social skills but because they haven't practiced them sufficiently” said therapist Nicole Shiloff. “Talking on the phone or asking someone on a date is a learnable skill, exactly like a tennis forehand. The key is that people have to linger in that uncomfortable area, learn to tolerate the anxiety. If you practice, you can get to the level you want.”
The clinical phrase is “cognitive reserve,” which sounds abstract until George Bartzokis wraps a cloth napkin tightly around a pen to explain what's really going on. The pen is the nerve fiber, and the napkin is the myelin. The aging of the brain, Bartzokis explains, is when gaps start appearing in the napkin. “The myelin literally starts to split apart with age,” Bartzokis said. “This is why every old person you've ever met in your life moves more slowly than they did when they were younger. Their muscles haven't changed, but the speed of the impulses they can send to them has changed, because the myelin gets old.”
This is why level of education is one of the most reliable predictors for Alzheimer's onset, Bartzokis says. More education creates a thicker, more robust circuit, better able to compensate for the early phases of disease. It's also why we've recently seen an avalanche of new studies, books, and video games built on the myelin-centric principle that practice staves off cognitive decline. The myelin model also highlights the importance of seeking new challenges. Experiments have found that situations in which people are forced to adapt and attune themselves to new challenges (i.e., make errors, pay attention, deep-practice) tend to increase cognitive reserve. One study showed that elderly people who pursued more leisure activities had a 38 percent lower risk for developing dementia. As one neurologist pointed out, the mantra “Use it or lose it” needs an update. It should be “Use it and get more of it.”
Carol Dweck, the psychologist who studies motivation, likes to say that all the world's parenting advice can be distilled to two simple rules: pay attention to what your children are fascinated by, and praise them for their effort. To which I would add, tell them how the myelin mechanism works, as Dweck herself did in a study that revealed the power of sending this message. She began by splitting seven hundred low-achieving middle schoolers into two groups. The first were given an eight-week workshop of study skills; the second were given the identical workshop along with something extra: a special fifty-minute session that described how the brain grows when it's challenged. Within a semester the second group had significantly improved their grades and study habits. The experimenters didn't tell the teachers which group the kids were in, but the teachers could tell anyway. The teachers couldn't put their finger on it, but they knew something big had changed.